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We have studied two recent computational methods for the solution of large systems of 
linear equations such as they arise in molecular calculations. (J. A. Pople et al., Int. J. 
Quantum Chem., Symp. 13 (1979), 225; G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 75 
(1981). 1284). It is proved that both methods are different versions of the conjugate gradient 
method. We draw some conclusions regarding the relative merits of these algorithms from the 
solution of a physical 7271-dimensional linear system, pertaining to the electron correlation 
in the CO molecule. 

1. INTRODUCTION 

The approximation procedures most often exploited in quantum mechanical 
calculations of the electronic structure of atoms and molecules are based on the 
variation principle. With the usual linear expansion of the trial wavefunction 
(Rayleigh-Ritz variational approach), defined in some finite-dimensional function 
space, the basic numerical procedure required by these approaches is the matrix 
eigenvalue problem. In methods based on the independent particle model (e.g., the 
SCF-MO-LCAO procedure), the dimensionality of the matrices to be diagonalized is 
not very large (usually less than 2 to 3 x lo*), but a large number of eigenvalues and 
correponding eigenvectors is required, while in correlation approaches (e.g., the 
configuration interaction method), the dimensionality can be very large (typically 
103-105), while only one or a few eigenvectors associated with the lowest lying eigen- 
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values are needed. Efficient computer programs have been developed for both types of 
problem [ 1, 21. (For a brief review, see, e.g., [3]). Particularly for the more 
demanding problems of the second type, several efficient methods exploiting the 
sparseness or the specific structure of the matrices, are now available. Incidentally, 
many of these methods are explicitly or implicitly based on Krylov sequences A”r,,, 
n = 0, 1) 2 )...) where r,, is some starting vector and A is, or is closely related to, the 
Hamilton matrix in the expansion basis. 

Of more recent date are quantum mechanical approximation procedures which 
employ wavefunctions defined as an exponential operator acting on a known 
reference function. The wavefunction parameters, to be determined variationally or 
otherwise, are contained in the exponent. In contrast to the Rayleigh-Ritz approach, 
these exponential methods require the solution of systems of nonlinear equations. 
Usually the solutions are sought by a first-order Newton-Raphson procedure [4], 
entailing the repeated solution of sets of inhomogeneous linear equations. 

The exponential ansatz for the wavefunction can be made on the orbital (one- 
electron) level. To that end, one transforms a given set of orbitals by a unitary matrix 
U, and uses the canonical coordinates [ 51 of U as the parameters to be determined. 
(Recall that the canonical coordinates of U, expressed as a matrix, appear in the 
exponent). This orbital ansalz has been used to formulate the generalized Brillouin 
theorem [6], a super-CZ multiconfiguration self-consistent field (MCSCF) approach 
[ 71 and several quadratically convergent MCSCF approaches 18-13 1. One- 
conliguration’SCF can also be formulated in this manner [ 141. 

An exponential N-electron operator acting on an N-electron reference state is the 
point of departure of the so-called coupled cluster approaches to the correlation 
problem [ 151. They can be regarded as a special recursive formulation of infinite 
order perturbation theory. When only pair clusters are considered, one obtains a 
system of quadratic equations, which characterizes the coupled-pair many-electron 
theory (CPMET). A convenient starting point for the solution of these quadratic 
equations is the solution of the corresponding linear problem, obtained by neglecting 
the bilinear terms. This approximation to CPMET (the linear or L-CPMET) is of 
considerable interest in its own right, both because of its physical significance and 
because of its proximity to the full CPMET result in most cases (cf., e.g., [ 16 and 
171). The relationship of the L-CPMET with the corresponding variational approach 
(SD-CL singly- and doubly-excited configuration interaction) has been recently 
studied in considerable detail [ 181. This comparison also indicated the suitability of 
certain numerical procedures, namely, of the conjugate direction methods ] 19 ], for 
the solution of the linear L-CPMET equations. Since these methods also exploit 
Krylov-type sequences, the basic computational step needed is identical to that 
required in many of the iterative diagonalization algorithms mentioned above. 

Another class of quantum mechanical approximation procedures requiring the 
solution of linear equations is formed by those based on perturbation theory. Here, 
too, one can distinguish methods which operate on the orbital level and those which 
act on the N-electron level. The former are the coupled Hartree-Fock methods 1201, 
which can be cast in such a form that the solution of a (large) set of linear equations 
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is required [21]. The coupled time-dependent Hartree-Fock method also requires the 
solution of linear equations [22,23]. On the N-electron level, perturbation theory has 
been applied to the calculation of correlated second-order properties, such as nuclear 
spin-spin coupling [24, 251 and electric polarizabilities [26,27]. 

The solution of linear systems of small dimensionality is best carried out by Gauss 
elimination for arbitrary matrices or Cholesky decomposition for symmetric, definite 
matrices 141. These approaches become unsuitable, however, for large (even sparse) 
systems, whose coefficient matrix cannot be kept in fast store. In such a case. 
iterative algorithms, which require only one or a few matrix elements at a time in 
core and converge reasonably fast (half a dozen to a dozen iterations), are preferable. 
The best known and the simplest iterative algorithms are those of Jacobi and Gauss 
and Seidel 1281. Unfortunately, their convergence is often too slow (more than 20 
iterations to achieve a 4 to 5 digit accuracy) and sometimes divergence may even 
occur. Their convergence characteristics can often be significantly improved using 
Pade approximants [ 27 I. 

The desirability of having at one’s disposal algorithms comparable in efficiency to 
the large matrix diagonalization procedures led recently to the formulation of two 
new iterative procedures [21, 291. The method of Pople, Krishnan, Schlegel, and 
Binkley [21] has been formulated for coupled Hartree-Fock theory and successfully 
applied in Newton-Raphson MCSCF [ 131 and CI perturbation theory 1261. The very 
recent method of Purvis and Bartlett [29] has been exploited in coupled-cluster type 
calculations. We will show in this paper that both these methods are in fact different 
variants of the conjugate gradient method of Hestenes and Stiefel 1301. 

In view of the importance of these algorithms in calculations of correlated energies 
and molecular properties, as indicated above, we shall present a brief outline of the 
conjugate gradient algorithm. This is also necessary to reveal the equivalence of the 
above mentioned methods [ 21,291 with the conjugate gradient method. The outline 
differs considerably from the usual ones found in the numerical analysis literature 
[ 19. 28, 311, but is akin to the treatment of Parlett [ 2 1. 

We shall illustrate the convergence characteristics of the standard and a precon- 
ditioned form of the conjugate gradient algorithm in the case of the L-CPMET 
equations (dimension 7271) for the carbon monoxide molecule. This will indicate that 
the preconditioned conjugate gradient algorithm is at least as effective as the 
diagonalization algorithms in the related SD-C1 approach. 

II. THE CONJUGATE GRADIENT METHOD 

In this section, the conjugate gradient method will be formulated in a manner 
convenient for expounding its relationship with the method of Pople et al. [ 2 1 1, and 
Purvis and Bartlett [29]. The derivations in this section are algebraically oriented; in 
Appendix II a geometric exposition of the conjugate gradient method is given. 

We consider a real n-dimensional inner product space V,, and a positive definite 
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and symmetric linear operator A on this space. (In practice, A is usually defined by 
its matrix A with respect to a given basis). The problem to be solved is 

where I/z) is a known vector. This problem is equivalent to finding the minimum point 
of the quadratic functional 

FIX] := 4(x IA Ix) - (x I/z). (2) 

To show this, we first observe that the gradient of F[x] is given by 

IVFlx]) =A Ix) - IA), (3) 

and hence that the solution Ix,,) of Eq. (1) is a stationary point of FIX]. Expanding 
FIX] in a Taylor series around Ix,,) we get 

F[x] =F[x,] +f(x-x,/A lx-x()). (4) 

Since A is positive definite, this equation shows that F[x] attains its minimum if and 
only if Ix) = 1x0). 

The conjugate gradient method proceeds by constructing a sequence of i- 
dimensional planes ni, i = l,..., k < n 

and by minimizing F[x] on these planes successively. See Appendix I for the 
definition of a plane. Denoting the minimum point of F[x] on Lri by /xi+ ,), we define 
the (i + I)th residual vector by 

I’itl) :=-IVF[xi+~l)=-A Ixi+I> + IA)* 

Below, we shall prove that the residual vectors form an orthogonal, though unnor- 
malized, set. This fact suggests that we generate LIk by the set {lri) / i = l,..., k} (cf. 
Appendix I), which indeed is the choice made in the conjugate gradient method. 
Accordingly the conjugate gradient method can be described thus: Choose ix,) and 
compute jr,) by Eq. (6). Minimize F[x] on the one-dimensional plane Z7, spanned by 
1 r,) and passing through Ix]). This yields an improved minimum point 1x2). Calculate 

IrJ by Eq. (6) and minimize F[x] on II,, spanned by Ir,) and lr,) and passing 
through Ix,) and 1x2); etc. This algorithm must necessarily end in at most n cycles. 
as minimization of F[x] on Z7,= V,, gives the exact solution. Usually one has 
(Pi ( Ye) z 0 for certain k Q n. In that case, the point 1.~~) is a good approximation to 
the exact solution Ix,,), as follows from comparing Eqs. (1) and (6), and we may end 
the algorithm after k steps. 
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Consider now the problem of minimizing F[x] on a plane nk. We will see that this 
problem is equivalent to solving a projected set of k linear equations. 

We define a projector 0, onto 17k (cf. Appendix I) as 

0, := (7 lyi> ('iI 

,-, (ri' 
(7) 

where the / yi) are orthogonal. Further we define the outer projection A’“’ of A [ 32 1 as 

Ack’ := 0, A 0,. (8) 

In matrix formulation Ack’ is represented by a k x k matrix. 
A point ix) in the plane IZk satisfies the equation (Eq. (A3) of Appendix I) 

Ix) = IX,) + 0, lx), 

where 

(9) 

lx,) := (1 - 0,) 1X(). (10) 

At this stage, Ixl) may be any fixed point in lZk, but we take it to be the Ith minimum 
point, I< k. Substituting Eq. (9) into F and invoking the selfadjointness of 0, gives 

F[xl = ;(.fl A I-U,) + (xl 0,A I.lc,) + +(x1 O,AO, Ix) - (f,lh) - (x 0, Ih). (1 1) 

The gradient of F at the point Ix) is 

~VF[x]>=A’k’~x)+OkA(l-Ok)~x,)-Ok~h) 

= A’k’(IX) - Ix,)> + ‘kcA ix,> - iA)) 

=A”‘(lx) - lx,)) - lr,), x E II,. (12) 

So a stationary point /xk+ ,) is obtained by solving 

A’k’(lXk+l) - Ix,)) = ir,> (13) 

for arbitrary I, I< k. Since Ack’ is positive definite, just as is A, the stationary point 
Ixk+ ,) is a minimum point of F[x] on flk. Equation (13) states that /r,,+ ,) is 
orthogonal to nk. In order to see this, we rewrite the left-hand side of the equation, 
using Eq. (6), 

OkA(txk+ 1 )-lXl)>=ok(lrl)-lrk~I))=.lrI)-ok/rk+I). 

Hence, invoking Eq. (13), 

(14) 

0,lr,+,)=O (15) 
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if and only if ]xL+i) is a minimum point of FIX]. Equation (15) shows that 1 rk + ,) is 
orthogonal to flk and in particular to its basis Ir,), /I-~),..., Irk). By the principle of 
mathematical induction, it then follows that the set of residual vectors is orthogonal. 

We would like to stress that a projection operator is independent of the choice of 
basis. So in another basis, an equation equivalent to Eq. (13) must be solved. In the 
next section a basis will be introduced which enables an analytic solution of Eq. (13). 

III. THE RECURSIVE FORMULATION OF THE CONJUGATE GRADIENT METHOD 

In this section, the usual recursion relations ] 19, 28, 3 1 ] of the conjugate gradient 
method will be derived by solving the projected linear equations, Eq. (13), 
analytically. We consider two consecutive minimum points and define the difference 
vector 

Iqd := I%+,) - IXJ. (16) 

Thus, if we take I = k in Eq. (13) the equation determining the minimum point 
/xk+ ,) of F[x] on the plane IZk takes the form 

Atk’ Id = I rd. (17) 

By projection with ) qj) E ZZ,, j < k, we obtain 

where the last equality follows from Irk) being orthogonal to Z’Z,. Equation (18) 
expresses the fact that the vectors lqi) are A-conjugate (or briefly: conjugate), i.e., 
they are orthogonal in the A-metric. Clearly, an A-conjugate set is linearly 
independent, as A is symmetric and definite. 

In order to solve Eq. (17) we make the induction step from LrkP, to LZk and 
assume that the plane ZZk is spanned by 

UUi>, := IIS,), IqzL Iqk-lh lr/oL (19) 

where the first k- 1 vectors span ZZkP,. The outer projection A’@ of A will be 
defined in terms of this nonorthogonal basis. Consider the operator 

(Ack))-l := c iui)A,;’ (yi/, 
i.j- I 

(20) 

where Al?’ is the (i,j) element of the inverse of the matrix (ui] A 1~~). It is easily 
shown that 

A’k’(A(k))-’ zx 0,. (21) 
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Hence Eq. (17) can be written thus 

Here we have used that / rk) is orthogonal to I&-, , as has been shown in Section II, 
Eq. (15). In order to obtain explicit expressions for A,;‘, j = l,..., k, we project. First 
project with (~~1; this yields 

4’ = bhJ(~A~~)*~ (23) 

Secondly, we project with (qjl A, j < k, yielding 

O= CqjlA Irk) (rAqk)l(rklrk)2 + (q,/IA lqj)A.,<‘* (24) 

Using 

we obtain 

(qjl A Irk>= ([jFrj+l Irk)=-‘j+I.k(rklrrC)r (25) 

A& = 6. (rAq/o 
‘+“’ (qkp,l A Iqkp,) (rklrk) = *j+~~ 

(rklqk) 
(rk-l~~k-l)(rkb-k)' 

C-26) 

Hence 

lqk)= (Yklqk)[(rklrk)-’ Irk)+ (rk-liqk-l)p’ lqk~l)l, (27) 

which is the solution of projected linear equation (17). In order to obtain a 
computationally feasible recursion relation, we note that Eq. (27) is invariant under a 
renormalization of the vectors iqi) and we substitute 

and require 

IPi> :=ail ICri>9 i = l,..., k, (28) 

(ri I 6) = (ri I Pi>, i = l,..., k. (29) 

This gives for the normalization constant 

ak= (rk/rk)/(PkIA bk). 

We finally arrive at 

IPk)=lrk)+ [(rklrk)/(rk-l~Pk~l)l bk-l). 

The definition of Iqk- ,), Eq. (16), together with Eq. (28) gives 

(30) 

(31) 

(32) 
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from which follows for the residual vectors the relation 

The recursion relations (30)-(33) give the conjugate gradient in its usual formulation. 
The recursion is started by guessing the first minimum point [xi), calculating Ir,) by 
its defining equation (6), and using Ip,) = Ir,). (This equality follows from the fact 
that both vectors belong to the plane n, together with normalization condition (29)). 
The iteration ends when the norm of 1~~) becomes smaller than a specified threshold. 

To conclude this section, we want to point out that the conjugate gradient method 
is often described as a line search method [ 19, 3 11. See Appendix II for a brief 
discussion of the method from this point of view. This is possible by virtue of Eq. 
(32), which in fact shows that the minimum point /xk) of F(x] on the plane ZZkp, lies 
on a line through 1 xk- ,) in the direction / pk- ,). So, if one would know I pk ,), one 
would have to minimize F[x] only on this line (one-dimensional plane), instead of on 
the k - dimensional plane flk. It is easily checked that this one-dimensional 
minimization of F[x] yields indeed the value in Eq. (30) for ak- , . Alternatively, akp, 
can be obtained by writing the outer projection Ackp” of A in the basis (lpi); 
i= 1 ,..., k - 1 }, which gives Ack-” a diagonal form. Then, of course, Eq. (13) or (17) 
can be solved quite easily and again the same value for akp, results. 

The basic problem, however, is the determination of Ipk- ,), conjugate to the 
preceding vectors lp,). In this section, we have obtained Ipk- ,) by solution of 
projected equation (17), expressed in the mixed basis (19), but other routes are 
possible. For instance, a Gram-Schmidt orthogonalization (with A as the metric) of 
Irk-i) onto Ip,),..., Ipkm2) also yields I pkP i) [33]. This process is equivalent to a 
solution of Eq. (17) by a Cholesky decomposition of Ackp I), whereas the procedure 
employed in this section may be best described as an escalator-type method [ 34 1. 

IV. A COMPARISON OF POPLE'S METHOD AND THE 

CONJUGATE GRADIENT METHOD 

In this section, the relationship between the method of Pople et al. [21] and the 
conjugate gradient method will be discussed. Before we do this, we show that we may 
construct the residual vectors {I ri) I i = l,..., k}, spanning the plane ZZk, by a Gram- 
Schmidt process with the unit matrix as the metric. (More precisely, it is the space V, 
parallel to L7k which is spanned by {I ri)}. See Appendix I.) Consider Irk+ ,), which is 
normal to Z7,, and let 0, be the projector onto this plane (cf. Eq. (7)). Then 

Irk+l)=(l-OkWi+l > = (1 - OJIM -aJ IP,J 
=--a~(l-~~)AII~k)+((~kI~k)l(~k-ll~k-l))I~k~l)l 
= -ak(l - 0,) A Irk). (34) 
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We have consecutively used the fact that Irk) lies in ZZk, recursion relation (31), and 
the fact that A ( pk- I) lies in nk, as follows directly from Eq. (33). If we write 0, in 
the basis (Iri)} and insert it into the final expression, Eq. (34), we see that, apart from 
the multiplicative constant -ak, the vector 1 rk+ r) can be obtained by a Gram- 
Schmidt orthogonalization of A 1 rk) onto 1 r,),..., Irk j. This, in turn, shows that the 
Krylov sequence 

{Ir,),A lr,), A2 Ir,),..., Ak Ir,)) (35) 

also spans ZZk+ 1. Hence the basis of residual vectors is in fact a Lanczos basis [2] of 
17 k+, . The Krylov sequence, Eq. (35), represents a nonorthogonal basis for the plane. 
Consequently, the direct use of the Krylov sequence is not as convenient as is the use 
of the residual vectors. 

Parenthetically, it is worthwhile to recall that sequence (35) can have at most v(A) 
linearly independent members, where v(A) is the number of distinct eigenvalues of A 
(the degree of the minimal polynomial of A). This means that the conjugate gradient 
method terminates after at most v(A) steps. Clearly, v(A) is less than or equal to n, 
where n is the dimension of our problem. 

Pople et al. [2 1 ] partition the operator A by defining 

x:= (1 -A) (36) 

and use A, rather than A, in constructing a Krylov sequence. Furthermore, they do 
not use this sequence directly but Gram-Schmidt orthogonalize it. Therefore, their 
basis for ZZk+ , , k > 1 is obtained by 

Ilk+,) := (l - Qk)‘/‘k), (37) 

where 

k- I Pi> Ctil 

Qk := ,;, (filli) ’ 

and ( Iti)} is an orthogonal and unnormalized set. As a starting vector, they choose 
It,) = Ih), h’ h w ic corresponds to the choice 1x1) = 0 in the conjugate gradient method. 
(This means that all planes n, ,..., nk pass through the origin of I’, and are thus iden- 
tical to the linear subspaces Vi of I’,, defined in Appendix I). Using mathematical 
induction we shall prove that 

I ti) = ti I ri), i& 1, (39) 

where Iri) is the residual vector defined in Eq. (6) and Ti is a constant yet to be deter- 
mined. Assuming that (39) holds for i = l,..., k, we have 

Ok=Qk, (40) 
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where the projector 0, has been defined in Eq. (7). Thus, 

1 lk+ ,) = tk( 1 - Ok) x Irk) = -<kc1 - O,)(l - K) ( rk) = -(kc1 - Ok> A / rk) 

= (tklak) / rk + 1). (41) 

Here we have used the fact that (1 - 0,) / yk) vanishes, and have invoked Eq. (34). 
Hence 

5 kt 1 = tk/ak’ (42) 

Using <, = 1, we find 

(43) 

This shows that the Lanczos-type basis employed in ] 211 is essentially a basis of 
residual vectors (gradients of the functional F[x]). This, of course, implies, that the 
sequences of subspaces, generated in both methods, are identical. 

The sequence of minimum points ]xk) may be found by solving projected equations 
(13). Pople et al. choose I = 1 and hence solve 

A’k’ ixk+ 1 >=o,lh) (44) 

for k = 1, 2 ,..., successively. 
This finally shows that the method of 1211 is equivalent to the conjugate gradient 

method with Ix,) = 0. That is, the sequence of solution vectors (xk) is identical in 
both methods. The manner, however, in which the minimum points are obtained in 
practice differs considerably. 

V. A COMPARISON OF THE METHOD OF PURVIS AND BARTLETT 
AND THE CONJUGATE GRADIENT METHOD 

In this section, we shall show that the recent method of Purvis and Bartlett [ 29 ] for 
the solution of large sets of inhomogeneous linear equations is equivalent to a precon- 
ditioned conjugate gradient method. 

Because we shall precondition linear problem (1) by the diagonal part of the 
matrix of A in a given basis, it is convenient to use matrix (i.e., basis dependent) 
notation in this section. We thus consider 

Ax-h=0 (45) 

and write 

A=D+A, (46) 
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where D represents the diagonal part of A. The corresponding symmetrically precon- 
ditoned problem takes the form 

By-g==, (47) 

where 

B = D t/ZAD - I/2 
> (48) 

g = D - “*h. (49) 

Instead of (45), we solve (47) by the conjugate gradient method. Once the solution y 
has been found we obtain x via 

x zz D "'y. (50) 

This type of preconditioning is advantageous when A (and therefore also B) is 
diagonally dominant. Since Eq. (48) shows that all the diagonal elements of B are 
unity, it then follows that all the eigenvalues of B cluster around this value. It has 
been pointed out in Section IV that the conjugate gradient method converges in one 
step if v(B) = 1, i.e., if B has only one distinct eigenvalue. If the eigenvalues are all 
closely spaced around one eigenvalue, one may still expect good convergence [ 191. 

The matrix B has the form 

B = 1 + D-“*AD-“’ = 1 - g, (51) 

with 

ii := 1 - B. (52) 

We have seen in the beginning of Section IV that we can use a Krylov sequence 

{S,) ES,) ii’s, ,...) fPS,} (53) 

as a basis for the plane nk+, onto which we want to project (47). Here s, is the first 
residual vector given by 

s, := -BY, + g, (54) 

where y, is a (guessed) starting vector. Rather than taking the Krylov sequence (53) 
directly as a basis, however, we introduce the following linear combinations: 

ui+, := 21: iFSI, i > 0. 
j=O 

Clearly, {ui) is linearly independent whenever the Krylov sequence (53) is, since (55) 
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is a nonsingular transformation. Realizing that (55) is a geometric sequence, we may 
replace it by the following recursion relation: 

“i+l = ihi + s, (56) 

and 

u, =s,. (57) 

Clearly, both the Krylov sequence (53) and the set {ui} are nonorthogonal. Using the 
shorthand notation 

u, := (“I 3 “q,..., “J, (58) 

we can write the projector 0, onto IZk as follows [32]: 

0, = Uk(UpJk)-l u;, (59) 

where T designates the transpose. 
We shall now solve the matrix analogue of Eq. (13) for system (47). Choosing 

I= 1, we get 

Bck’w, = s 1, (60) 

where 

wk :=yktl-YIEnk. (61) 

Equation (60) is easily seen to be equivalent to 

U:BUkzk = U;s,, (62) 

where 

Zk := (up,)-’ u;fw,, (63) 

i.e. zk represents wk in the basis {ui}. 
Let us now rewrite recurrence relations (54), (56), and (57) in terms of the original 

matrix A using (46) and (51). For the first residual vector we get 

u1 = sI = -D -‘/*AD-‘/2y, +D-‘/2h=-D-‘/2[AX,-hJ =D-1/2r,, (64) 

where we have used definition (6) for r, . Recurrence relation (56) reads 

“it1 = -D - ‘12AD - lizui + D - ‘I*,-, . (65) 

Defining 

ti := D-“‘q i> 1, (66) 



CG METHOD IN MOLECULAR CALCULATIONS 35 

we find 

4+, = -Dp’[Ati-rr,], i> 1. (67) 

It should be observed that recursive formula (67) has the same form as the recursion 
relation appearing in the Jacobi algorithm for the solution of linear equations [28 1. In 
the case of original system (l), this relation would have the form 

'i+l =-D-‘[Axi-h]. (68) 

In fact, (67) and (68) would be identical if we chose as a starting vector x, = 0. in 
which case r, = h. In the present formulation of the preconditioned conjugate gradient 
method, however, the Jacobi recursion relation is employed to generate a basis for the 
plane nk, and (an approximation to) the solution vector is obtained from Eq. (60) or 
(62), and not from (68). 

To facilitate the comparison with the method of Purvis and Bartlett, we also 
express (62) in terms of the original matrix A. To this end we define 

T, := (t, ) t, ,...) fk), (69) 

so that 

T 
k 

= ,--‘/2U 
k, (70) 

by Eq. (66). We rewrite (62) as 

U~D-“2AD-1’2Uk~k = U:D-“‘r I, (71) 

or equivalently, 

T:AI‘,z, = I’:‘, . (72) 

Summarizing we may state that the conjugate gradient method applied to 
preconditioned problem (47) proceeds by generating a basis (ti} via the Jacobi-type 
iteration formula (67). The solution vector yk+, is found by solving (60), (62), or 
(72). From O,w, = wk = U,z, we find by (61), (63), and definition (59) of 0, that 

Yktl =YI +UkZk, (73) 

and by (50) and (70) that 

xk+, =x, +l‘,&. (74) 

After having formulated the conjugate gradient method in this special manner, we 
can turn to the method of Purvis and Bartlett [ 291. The relationship between the two 
methods is now completely transparent. Equation (67), defining the basis (ti}, 
becomes identical to (29, Eq. (7)], h w en we substitute rl = h, i.e., when we choose 
x, = y, = 0 as the starting vector. In that case, the reduced linear equation 129, 
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Eq. (S)] is identical to our Eq. (72). Note that once zk has been determined from 
Eq. (72), the best approximation to the final solution is given in terms of the ti by Eq. 
(74). On this point we disagree with Purvis and Bartlett, who suggest in their Eq. 
(11) that it is necessary to do one more Jacobi iteration, of the type given in Eq. (67) 
in order to obtain a final solution from zk and (ti}. 

In this connection, it may be of interest to show that the L-CPMET (L-CCD) 
correlation energy is not affected by such an extra Jacobi iteration. Let xIk, be the 
vector obtained from xk by a Jacobi iteration of the type given in Eq. (68). The 
L-CPMET energy, being the inner product of the solution x0 of the original linear 
equation (45) and the vector h ( 181, can be approximated with the aid of either of the 
two vectors. If we choose the zero vector as the starting vector, both vectors x,~, and 
xk yield the same energy, namely, 

xTk,h = (-D-‘[A xk-h]JTh=(-Dp’[(A-D)xk-h\}’ h 

=x;h- [D-“‘(A~~-hh)]~(D-“~h) 

= xjSh + s; . s, = x;h, where sk = -By, + g. (75) 

The last equality follows from the fact that the residual vectors si are orthogonal. 
In a very similar manner it can be shown that at convergence the extra Jacobi 

iteration does not change the minimum point, i.e., s, = 0 implies xlm, = x,,. So it 
follows that an extra Jacobi iteration is always unnecessary. 

In summary of this section, we may state that the Purvis-Bartlett method 129 ] 
yields a sequence of solution vectors which is identical to the corresponding sequence 
found in the conjugate gradient method, provided we precondition the linear equation 
by the diagonal part D of the original matrix A and choose the zero vector as our 
starting vector. 

VI. NUMERICAL EXAMPLE AND DISCUSSION 

In this section, we demonstrate the practical implications of the preceding sections 
by discussing the solution of the L-CPMET (or L-CCSD [29]) equations for the 
carbon monoxide molecule in its electronic ground state. Detailed information about 
the L-CPMET and its relation to configuration interaction on the basis of singles and 
doubles (SD-CI) is given in a recent paper [ 181. That reference may also be 
consulted for the details concerning the restricted Hartree-Fock solution of the CO 
molecule. 

With the two core molecular orbitals kept doubly occupied, the SD-C1 basis 
consists of 7272 spin-adapted states, including the ground state. A truncated basis 
was obtained by selecting the 224 configurations which give the largest interaction 
with the ground state. The results for the solution of the corresponding L-CPMET 
equations are given in Tables 1 and II, for the 7271- and 224-dimensional cases, 
respectively. The heading PCG denotes the results obtained by the preconditioned 
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TABLE I 

The Solution of the 7271.Dimensional L-CPMET Problem for the CO-Molecule 

PCG CG 
-.. __~-- Jacobi 

Cycle llrll’ -EL.cP,FT II rl/’ --E, ,.,j\,t I -E, (P\,, I 

1 0.15174(-l) 0.26141095 0.16074(+1) 0.17172940 0.32117880 
2 0.17182(-2) 0.27367654 0.76409(+0) 0.19721398 0.24774589 
3 0.26725(-3) 0.27531201 0.65475(+0) 0.22353 196 0.28744 150 
4 0.22715(-4) 0.27558497 o.l5214(to) 0.2433087 1 0.26636685 
5 0.16651(-5) 0.27560944 0.21558(+0) 0.25335067 0.28152791 
6 0.11582(-6) 0.27561117 0.14584(+0) 0.25826364 0.27066924 
7 0.74678(-g) 0.27561129 0.89990(-l) 0.26218252 0.27942996 
8 0.61242(-9) 0.27561130 0.72052(-l) 0.26473006 0.27235942 
9 0.44115(-IO) 0.27561130 0.48678(-l) 0.2675 1638 0.27830615 

IO 0.26433(-l) 0.26913577 0.27330394 

20 0.402+2) 0.27481841 0.275;2056 

30 0.549&3) 0.275;2904 0.275;0503 

40 0.269;0(-4) 0.275.60674 0.275;8828 

TABLE II 

The Solution of a 224.Dimensional L-CPMET Problem for the CO-Molecule 

Cycle 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 

I:7 

PCG CG 

llrll’ -Et c Pbfb 1 ilrll’ -E, c 1’\,1 I 

0.23075(-2) 0.13603638 o.l3212(to) 0.10741826 
0.48063(-4) 0.13814484 0.70065(-l) 0.12125493 

0.20222(-5) 0.13820012 &I 1157(-l) 0.13359453 
0.89477(-7) 0.13820240 0.34475(-2) 0.13676214 
0.20056(-g) 0.13820250 0.90525(-3) 0.13780054 
0.43196(-10) 0.13820250 0.21092(-3) 0.13810825 

0.70358(-4) 0.13817674 
0.15779(-4) 0.13819589 
0.40153(-5) 0.13820064 
0.11784(--5) 0.13820204 

- 0.58750(-10) 0.138;0250 
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conjugate gradient method, described in Section V, and CG stands for the conjugate 
gradient method applied to the L-CPMET equations directly, For the sake of 
comparison, results obtained by the Jacobi algorithm [28] are given also. These have 
been obtained by a program employing the Purvis-Bartlett method. Since the results 
of the Purvis-Bartlett method were an exact copy of the PCG results, we do not 
include them. It suffices to mention that rounding errors do not invalidate the theory 
of Section V. The results obtained by the preconditioned versions of the recursion 
relations (31)-(33) agreed in more than 10 digits with the results obtained by the 
numerical solution of the reduced linear equation (72). 

The norm of the residual vectors is given, as it is a natural convergence criterion 
for the conjugate gradient algorithm. It tends to zero in the limit of convergence. The 
L-CPMET energies are given to enable comparison with results of the Jacobi 
algorithm. 

Our first observation concerns the effect of the simple preconditioning discussed in 
Section V. It is seen to be very effective, in the large as well as in the small case. 
Second, we observe that without preconditioning the convergence is poor for the 
small system, and slow even in the case of the large system. The CG method 
performs only slightly better than the Jacobi method. 

An explanation can be found by considering the spectral radius of the coefficient 
matrices. The spectral radius of a matrix may be defined as the quotient of the largest 
and the smallest eigenvalue. This quantity is not far from unity if all eigenvalues 
cluster around one value. As we have seen in Section V, the preconditioned matrix B 
of Eq. (48) has this property. It can be shown [3 1 ] that the number of iterations 
needed in the conjugate gradient algorithm is to a good approximation proportional 
to the square root of the spectral radius of the coefficient matrix. This explains why 
preconditioning accelerates the conjugate gradient method and also why the small 
problem needs fewer cycles than the large problem. Because the configurations in the 
small basis were selected by an energy criterion, it follows that the corresponding 
spectral radius will be considerably smaller than for the matrix in the large, 
unselected basis. In fact, the spectral radii are 25 and 443, respectively, predicting the 
convergence to be about four times faster in the small system. This compares well 
with the factor 4.5 found by comparing the results of Tables I and II. The large 
system would need approximately 70 CG iterations to achieve a norm ]lr (/ of the 
residual vector less than 10e5. Because of computing costs, we stopped at 40 cycles. 
(Recall that each cycle requires a matrix vector multiplication.) 

Comparing the three methods discussed in the previous sections, we conclude that 
the Purvis-Bartlett method [29], and accordingly also the PCG method, converge 
well in the case of a diagonally dominant matrix. The method of Pople et al. (21 ], 
which is equivalent to a straight conjugate gradient method, however, converges 
poorly for matrices with a large spectral radius. If the spectral radius of the coef- 
ficient matrix is larger than, say, ten, the method of Pople et al. will require at least 
ten iterations. 

With regard to the practical implementations of the methods, we stress the fact that 
the Purvis-Bartlett method and also the one of Pople et al. require a numerical 
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solution of the reduced linear system in each iteration. For well-convergent problems, 
the CPU time required for this solution is a small fraction of the time that goes into 
the matrix vector multiplication. In ill-conditioned cases, however, the time may 
become sizeable. For instance, in the case of the large system discussed here, we 
would finally have to solve a set of linear equations of dimension 70, if we were to 
use the method of Pople et al. Perhaps a more severe limitation in the applicability of 
the methods of Purvis and Bartlett and Pople et al., however, is the necessity of 
saving the iterants in order to be able to set up the reduced linear equations. The 
conjugate gradient method has neither of these two drawbacks. No numerical solution 
of the reduced linear equations is necessary, since these equations are in fact solved 
analytically as we have shown in Section III. Its storage requirements are modest: 
only four vectors are required in core, and no saving of iterants is necessary. 

APPENDIX I: PLANES AND QUOTIENT SPACES 

In the main text of this paper, the well-known language of Euclidean point (affine) 
spaces [35] has been used freely, although the space V,,, introduced in Section II, is 
not such a space. In this appendix, we shall give a precise meaning to the geometrical 
concepts used in this paper. 

Let V,, be a linear, n-dimensional, real inner product space and V, c V, a k- 
dimensional subspace, k < n. Two vectors Ix,) and ]xz) in I’, are congruenr module 
V, if and only if (Ix,) - Ix*)) E V,. Since congruence modulo V, is an equivalence 
relation (reflexive, symmetric, and transitive), it determines a partition of V, into 
equivalence classes. The set of equivalence classes is designated as V,,/V,, and is 
referred to as the quotient space of V,, relative to V,. The elements of V,/V, are 
called k-dimensional planes (linear varieties, manifolds) and denoted by IIk. A one- 
dimensional plane is usually called a line, and an (n - I)-dimensional plane is a 
hyperplane. 

A plane Z7k containing 1x0) E V, may be identified with the set of vectors 

(AlI 

that is, Zi’, is the translate of V, by Ix,,). We also say that lIk is parallel to V,. Note 
that V, is the only plane in V,/V, which is also a linear subspace of V,, as it is the 
only element containing the null vector. 

It may be helpful to observe that V, is an additive group, V, a normal subgroup 
and V,,/Vk a quotient (factor) group. The plane 1x0) + Vk is a coset of V, generated 
by 1x0). Any element of the plane can serve as a coset generator (can translate Vk). 

We will find it convenient to refer to vectors in Vk as vectors in 17,. Since distinct 
parallel (i.e., free) vectors do not exist in V, (in contrast to the situation in Euclidean 
point space), no confusion is possible with this terminology. The elements of flk are 
referred to as points in flk in order to distinguish them from vectors in nk. 
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Using a basis (1 ri > 1 i = l,..., k} of Vk we can express the plane ZZk := Ix,,) + I’, in 
the following parametric form 

Ix)=lx,)+ 1 tijri)T &E R. 
i-l 

WI 

We will call {I ri)} a b asis for IZk and furthermore say that IIk passes through Ix,,). 
The space Vk passes through the origin (the null vector). In the same vein, a projector 
0, onto Vk is also referred to as a projector onfo lZk. The projector (1 - 0,) is an 
annihilator for V, and nk. 

Let 1 x) be a point in IZk. Then 

~~)=(1-O,)~x)+O,~x)=(l-O,)~x,)+O,~x)=:~x,)+O~/~), (A3) 

where the second equality follows from Eq. (A2). Equation (A3) gives a decom- 
position of Ix) into a component I&,) normal to ZZk and a component 0, 1.~) in IZk (or 
more precisely: IX,,) is in the orthogonal complement of Vk and 0, lx) is in Vk). 
Equation (A3) is used in the main text. By acting with (1 - 0,) onto both sides of 
(A3) we obtain Hesse’s normal form for ZZk 

(1 - 0,) 1.x) = I&)). (Ad) 

Equation (A4) is, in fact, a system of (n - k) linear equations defining a plane n,, 
parallel to Vk and at a distance (X0 Ix~)“~ from the origin. 

APPENDIX II: BASIC GEOMETRIC IDEAS OF CONJUGATE DIRECTION METHODS 

In Section II, we have seen that the conjugate gradient method for the solution of 
linear equations can be considered a minimization of a quadratic functional F[ x 1, (cf. 
Eq. (2)). In this Appendix, we want to illuminate the geometrical aspects of this 
minimization. Since the coefficient matrix A is positive definite, a stationary point x0 
of F[x] is a unique minimum point and the problem of minimizing F is equivalent to 
that of finding the center of the concentric hypersurfaces (ellipsoids) F[x] = c, 
representing the level surfaces of the quadratic functional. 

The most obvious and one of the oldest minimization methods is the method of 
steepest descent: starting at some initial guess x, , one searches for the minimum x2 in 
the direction of steepest descent, i.e., along the gradient of F at x,. This gradient is 
normal to the tangent hyperplane of the ellipsoid F[x] = F[x, 1. With x2 as a new 
starting point, the search is repeated along successive orthogonal directions until the 
minimum is reached. Although this method may be useful, it is known to be 
extremely slow, even in the case of quadratic functions, when the ratio between the 
largest and the smallest eigenvalues of A is very large. 
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To illustrate this point consider a simple two-dimensional case with 

h = 0, and XT = (x, y); p, 9 > 0, (A51 

in which case functional (2) has the form 

F(x, y) = px2 + qy2, (A61 

so that the minimum occurs at the origin and the main axes of level surfaces (i.e., 
ellipses in this case) are parallel with the coordinate axes x and y. This simplification 
clearly has no effect on the behavior of the iterative process we wish to investigate. 
Starting with some point P, = (x,, y,), located on the level surface F(x,J) = k,,, 
where k, := F(x,, , y,), the next point P,, , = (x,,, , , y,+ ,) is located on the gradient 
line through P, 

Y -Y, = (qYn/P-%J(x - xn>. (A7) 

Minimizing I;(x, y) along this line (A7) we find P,,, , , 

X n+ I = x,(1 - (Plq))[ 1 + (P/d3 WY,J2 I - ‘. 

.Yn+l =??A1 - (q/P))11 + k/P)” bnlX,W. 

The points Pi, i = 1, 2 ,..., obtained in successive iterations of the steepest descent 
procedure for the two-dimensional case, Eq. (A6), with p = 1 and q = 10 and with the 
starting point P,, x, = -8.803408 , y, = -1.5 located on the level surface F(x, y) = 
k, = 100 are shown in Fig. 1. Clearly, when p = q (circular level surfaces) only one 

P3 p5,... 

i 

-5 

4 

FIG. 1. Illustration of successive iterations in the steepest descent algorithm for the two-dimensional 
case of the quadratic function, Eq. (A6), with p = 1 and 9 = IO. The starting point P, (-8.803408, 
-1.5) was chosen to lie on the level surface F(x,y) = 100, represented by the ellipse E,. The successive 
points P, (i = 2,...) and the level surfaces on which they are located (ellipses E,, n = 2,...) are displayed. 
as well as their geometric properties. See the text for details. 
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iteration is necessary to reach the minimum. For p # q, however, the number of 
iterations to achieve a given accuracy increases with the ratio q/p. 

By some elementary algebra, however, it follows from Eqs. (A8a) and (A8b) that 

Yn+2/-%+2 =YnIXn, (A91 

i.e., all points P,, lie on a line through the origin, and the same holds for the points 
P Zn- I ) n = 1, 2 ).... Proceeding in a direction given by any two points P, and P, + I, 
n = 1, 2,..., we reach the desired minimum (the origin in this case) in a single step 
whatever the values of p and q (see also Fig. 1). This fact is the basis of the so-called 
gradient partan method, in which two successive steepest descent iterations are 
followed by the so-called acceleration step along the P, P, + 2 direction. 

The desired direction from a given starting point P, to the center of the level 
surfaces (i.e., to the solution x0) in a given subspace may, however, be obtained even 
more directly. We note that this direction is also given by P, and the midpoint of the 
chord which interconnects two points of the ellipse E,, r which are tangency points of 
the tangent lines to E,, , intersecting at P,. For example, the desired line through P, 

in Fig. 1 must pass through the midpoint of the chord P,P;. Further, there is no need 
that one of these tangent lines be in the gradient direction of P, (i.e., the tangent P, Pz 
in the above example) since the above stated property is valid for any point P and 
any ellipse E as shown schematically in Fig. 2. Moreover, the line L' through P and 
parallel to the chord P'P" (the polar line of P relative to E) is tangent to the level 
surface (i.e., an ellipse E') passing through P, so that F(x) reaches its minimum along 
the line L' at P. Any two vectors y and z which are parallel to the L and L', respec- 
tively, are conjugate as they may be shown to satisfy the relationship 

yTAz = z“Ay = 0. (AlO) 

The two-dimensional case outlined above can be easily extended to a general n- 
dimensional space. Thus, the midpoints of parallel chords of a quadratic hypersurface 
((n - l)-dimensional ellipsoid) EC"-') lie on a hyperplane I7,-, passing through the 
center of EC”-‘). The hyperplane ZZ,-, is conjugate to these chords. A similar result 
holds for a general k-dimensional plane IIk. The minimum point of F[x] on 17, lies 

FIG. 2. Schematic two-dimensional illustration of the conjugacy relationship. The line L passing 
through an arbitrary point P and the center of an arbitrary ellipse E is determined by P and the midpoint 
M of the chord PIP”. The points P’ and P” are the tangency points of the tangent lines to E intersecting 
at P. The line L’, called the polar line of P relatives to E, is the line through P parallel to P’P”. The 
directions defined by L and L’ are said to be conjugate. 
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on the intersection of nk with an (n - k)-dimensional plane Zlek conjugate to ZZ,. 
The plane UnPk passes through the absolute minimum x0 of F[x]. This is why the 
conjugate direction methods search for a minimum in a direction conjugate to all 
previous directions. See [ 19, Chap. II] for a detailed description of the conjugate 
direction methods from this point of view. 
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